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Abstract—We propose a novel class of opportunistic scheduling scheduling scheme that handles mixes of traffic while permit-

disciplines to handle mixes of real-time and best effort traffic at ting some degree of performance prediction is the objective of
a wireless access point. The objective is to support probabilistic this paper.

service rate guarantees to real-time sessions while still achieving Chall | ting this obiecti t
opportunistic throughput gains across users and traffic types. allenges.in meeting this objeclive one must overcome

We are able to show a ‘tight’ stochastic lower bound on the SOmewhat formidable challenges. End system device diversity,
service a real-time session would receive assuming that thespace-time variations in the propagation environment, interfer-
users possibly heterogenous capacity variations are known or ence, and different user mobility patterns, lead to heterogeneity
estimated, and are fast fading across slots. Such bounds areynqg yariapility in the channel capacity a user would see.
critical to enabling predictable guality of service and thus Indeed, those which are near a base station would generally
the development of complementary resource management and e -

admission control strategies. Our simulation results show that €Xperience a much better average channel capacity than those
the scheme can achieve more than 90% of the maximum systemat the edge of a coverage area. Further users will undergo
throughput capacity while satisfying the QoS requirements for fast fading, i.e., short term variations that depend on their
real-time traffic, and that the degradation in system throughput location, and whose statistics may vary over time e.g., time

is slow in the number of real-time users, i.e., inter and intra ina f bil of the idea is t loit
class opportunism are being properly exploited. We note however, varying for €.g. mobile users. course the idea Is to explol

that there is a tradeoff between strictness of QoS requirements Such fluctuations through an opportunistic scheduler, yet one
and the overall system throughput one can achieve. Thus if QoS must do this with care to avoid starving users whose channel

requirements on real-time traffic are very tight, one would need characteristics are less favorable. At the same time real-time
to simply give priority to real-time traffic at a loss throughput 44 pest effort sessions will have different traffic load statistics
derived from opportunism. . .
and heterogenous QoS requirements which a scheduler should

somehow address. Finding a practical approach to oppor-
tunistic scheduling that harmoniously deals with the above
discussed factors and at the same time allows ‘prediction’

Motivation. Wireless networks are moving towards providtowards supporting quality of service is the challenge we face.
ing broadband services. These services will support a mixtureRelated work. Perhaps the first opportunistic scheduling
of real-time streams (e.g., video/voice and multimedia) astheme was proposed in [10], here a greedy strategy known
best effort data transfers (like file downloads or web browsingds max rate scheduling was introduced, i.e., sending to a
From a user’s perspective this requires a scheduling schenser whose channel capacity is currently the highest. Max
which can ensure quality of service (QoS) to a real-timate scheduling achieves high overall system throughput, but
session and/or minimize transfer delays associated with b#sfisers have heterogenous channel capacity distributions, it
effort sessions (see Figure 1). From a system perspective oeglects users with poorer channels. Several approaches have
would like the capability to admit a large number of realbeen proposed to address both unfairness and performance
time sessions while, at the same time, maximize revenisgues. The best known iproportionally fair scheduling
generating data throughput. To manage such traffic mixes @i, [19], and subsequently, among otherspdified-largest
limited wireless resources, one must be able to predict ameighted delay firstf1l] and exponential rule[18] where
evaluate the likelihood that QoS commitments can be met, i.proposed. These mechanisms try to achieve multiple objectives
devise complementary resource allocation and call admissiofn ensuring QoS, maximizing throughput while achieving
strategies. ‘fairness’, etc, and succeed to various degrees. In [17] the

At the same time a key feature of wireless systems relatiperformance of these three scheduling algorithms was com-
to the traditional wireline systems is that the channel capacipared from the perspective of providing QoS guarantees and
or service rate, may exhibit temporal variations. This allowthe exponential rule was found to be best. More recently
one to consider scheduling policies that choose to send keaximum Throughput with Minimum/Maximum Rate and
or receive from, the user(s) which at a given time has(havejoportionally Fair with Minimum/Maximum Rate have been
the ‘best’, e.g., highest channel capacity. Such ‘opportunisroposed to satisfy users’ QoS guarantees in [2], the idea there
tic scheduling’ can lead to good increases in the aggreg&edo weight a user’s current rate by a factor based on how well
throughput of a wireless system. Devising an opportunistibe user is doing relative to its target rate.

I. INTRODUCTION



The above mentioned schemes achieve multiple objectivgs ..i_time users
by attaching priority weights to users and choose to serve
the user with the highest weighted channel capacity. These
weights can be a function of service a user has seen to date

. . n. best effort users —

the present queue backlog, and QoS or fairness requirements
among users. The flexibility in assigning these weights allows .
one to handle heterogeneity in channel capacity distributions. opportunistic scheduler

However proper selection of these weights is very difficult,
because they will in general be jointly dependent on the Ch{ﬁg' 1. Scheduling a mixture of real-time and best effort users from a wireless

. L h . .. ase station.
nel capacity distributions and traffic characteristics of all users,
and may be impossible for dynamic systems where the activitieally one would like to also exploit ‘inter class opportunism’,
levels and numbers of users vary. As such it is unclear whethex., opportunism from both the real-time and the best effort
a meaningful performance prediction, resource managemesers competing for service.
and call admission policies could be devised based on suclContributions and organizationin this paper we propose
schedulers. a novel opportunistic scheduling mechanism and resource
Another class of opportunistic scheduling approaches aslocation strategy that fulfil multiple objectives. Under the
sumes the channel distributions of users are known or egtssumption that the (possibly heterogenous) channel capacity
mated [11][12][4][15]. The idea is to schedule a user whos#stributions of users are known (or estimated) at the base
current rate is least likely relative to his current channstation and stay stable for moderate timescales, we are able
distribution, i.e., in the highest quantile — we shall refer ttb ensure probabilistic guarantees on the rate experienced by
these asmaximum quantile schedulingrhis approach has real-time sessions over short time scales. For simplicity, we
several desirable properties in terms of handling heterogenefiggin in Section Il by considering the case where sessions
decoupling users performance, and permitting prediction sée independent, identically distributed channel capacity vari-
long termaverage throughput. In our own work [14] we havations, i.e., homogeneous channel characteristics and want the
shown that in practice this scheme provides excellent througdame QoS guarantees. Under fast fading, we develop stochastic
put, packet delay and best effort flow delay performance eviwer bounds for the service received by real-time users which
when distributions need to be estimated on the fly. Howevean be used as a basis for making admission control and
alone this approach can not address short term QoS guarantessurce allocation decisions. This bound is significant because
required for real-time sessions. Nevertheless it will serve asallows resource allocation decision for a real-time user to
the building block for the work in this paper. be independent of other users’ channel capacity distributions.
The work of [21][22][20] suggests realizing QoS guaranteékhis independence holds true even when users have het-
based on an effective bandwidth concept. An evaluation of tBeogenous channel capacity variations and QoS requirements,
offered QoS is based on determining the effective capacishich is considered in Section IlTherefore the proposed
which requires knowledge or estimation asymptotic log m@pportunistic scheduler can predictably guarantee QoS over
ment generating function of the channel capacity process saort time scales while still benefiting from opportunism when
by a user at the base station. The approach initially focussgskrs have heterogeneous channel capacity distributions, i.e.,
on the case where all users have homogeneous channelesgloiting both intra class and inter class opportunishtis
pacity distributions which is unlikely in practice. Extensions verified in the simulation results presented in Section
to the case where users have heterogeneous channel cap&¢itwhich show that we can satisfy strong QoS guarantees
distributions was discussed in [20]. However the extensiavhile achieving more than 90% of the system throughput
required evaluating a complicated function over a continuousalized under max rate scheduling. This is excellent since
range of parameters for each user, making the scheme hiada static saturated set of users, max rate maximizes the
to implement. Furthermore, because the underlying analysistem throughput. Our analysis assumes users channels are
is based on large buffer large deviations, the resulting Qd&st fading, i.e., i.i.d., across slots, but we propose a heuristic
estimate may not be relevant on the short time scales relevarddification that would make the scheduler robust if in fact
for real-time users. The shortcomings of this work highlightssers capacity variations were dominated by a slow fading
some of the difficulties we mentioned earlier. However, noenvironment. This claim is again supported by our simulations.
that if we are to predictably ensure QoS guarantees it is likeBection V concludes the paper.
that the knowledge of users’ channel capacity statistics at the

base station will be required. » _ Il. SCHEDULING AND RESOURCEALLOCATION FOR
There is very little work on opportunistic scheduling and gy\METRICAL CHANNEL CAPACITY DISTRIBUTIONS
the integration of real-time and best effort traffic. A simple

solution may be to give absolute priority to real-time ovef System Model and Notation

best effort traffic. If the real-time sessions were scheduled op-For simplicity, we consider only downlink scheduling from
portunistically then such scheme would enable one to explaithase station to multiple users (the scheme can be applied for
‘intra class opportunism’, i.e., opportunism among users of thplink scheduling as well). We divide time into equal sized
same class. Yet due to the coupling among real time streamsldts with at most one user served per slot. During each slot,
is unclear, how performance could be predicted. Furthermoeach user feeds back the channel capacity or rate (we will use
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these terms interchangeably) it can support to the base stative base station only needs to know the mean and variance
which in turn makes a decision on which user to serve. Suoh a certain quantity users’ channel distribution to perform

a system model is used in CDMA-HDR systems defined nesource allocation. In summary, the assumption is required,
the CDMA2000 1S-856 standard [7]. but is not unreasonable in a practical system - which tracks

Channel assumptionsln practice, characterizing the chan-duasi-stationary changes in channel statistics.
nel capacity or rate seen by a user is quite complicated. Therd-€t us discuss the other assumptions. First as discussed
are several factors that affect the capacity, they can be broag#flier the channel capacities seen by users might indeed be
classified into two classes[16]. First, there is large scale pdftghly stationary over a reasonable period of time, partic-
loss in the ‘average’ capacity seen by a user due to tHErly if users are at fixed locations. We conjecture based
distance of a user from the base station, and the shadowiy the performance of maximum quantile scheduling under
due to obstacles in the path between the user and the b@sémated rate distributions that the users’ channel should be
station. Secondly, there is small-scale variation or fading in t&éationary for roughhO(n7,,) number of time slots (here;;
instantaneous capacity due to multipath time delay spread, thethe total number of users in the system) to allow us to
speed of such variations depends on the Doppler spread se@iect sufficient samples for performing resource allocation
by the user. Therefore a simple yet reasonably accurate modedl scheduling without penalizing throughput performance too
may be to view the channel capacity seen by a user as a quBdrh [14]. The assumption that users’ rates are independent
stationary random process, with the marginal distribution thig also likely to be true, though a notable exception is the
changes following changes in the large scale path loss. Thégge where mobile users move in a correlated manner, e.g.,
marginal distributions are likely to be different across usersalong a highway. The assumption that users’ channels are

Note that ensuring QoS requires giving guarantees towaliggntically_ distributed is simplistic, this will be relaxc_e(_j Ia_ter
future service, this can be done only if the users’ capaciWhen we incorporate heterogeneo.us chanr_lel capacities in our
distribution or some function of it is known or predicted at thfamework. For the channel capacity to be independent across
base station. Also note that if a user’s distribution changes, $#81S; the channel must be fast fading with a coherence time
guarantee given may or may not hold, thus one must constarftfj#@! 1o that of a slot's time period. This may not be realistic,
track and learn the distribution (or some function of it). IPUt ‘opportunistic beamforming’ [19] can provide sufficient
the channel is quasi-stationary on time scales where uséf@fiability in the rates experienced by users across slots to
rate distribution estimates may be made reliably, then the b48H9hly achieve this. Also, later we will propose a heuristic
station can track and allocate resources as needed to enQfde case where users’ rates are correlated across slots. Note
QoS goals are met. Of course, if users’ capacity distributidfat We do not assume any specific channel model, this allows
is changing too fast, then it is virtually impossible to providd€ scheme to work under any fading process users might be
any kind of guarantee. experiencing. , _ , ,

. ) N Notation. We begin by introducing some notation relevant
In this paper we will assume such quasi-stationary ch%-

- ) . this section. For simplicity, the time period of a slot is fixed
acteristics for users’ channel capacities, and for analy?(ljsa single time unit. LeK' — (Xi(t) : ¢ € N) be a discrete
purposes assume the regime where the users’ channels_are 9 i : ’
. . - . timé random process capturing the channel rate process of
in fact stationary. This will allow us to establish the resource . . i . .

X e S . useri. By Assumption 2.1 X"'s are stationary and ergodic
requirements for each ‘stationary’ regime the user experiences: 4 : :

processes. LeX"* be a random variable representing the mar-

Assumption 2.1\We assume the channel capacity (rate) fdfinal distribution ofX*. Again by Assumption 2.1, the channel
each user is a stationary ergodic process and these procelsstast fading, therefor&(* captures the rate distribution seen
are independent, identically distributed (i.i.d.) across usefd Useri in a typical slot. Letz'(¢) denote the realization of
The channel capacity for each user is fast fading, i.e., tHee channel capacity of userfor time slot¢. According to
channel capacity for each user is independent across slots Aggumption 2.1, the base station knows the distribution of the
remains constant during a slot. Further we assume that e in addition toz’(¢) for each user. Also since for now, we

marginal distribution for each user is either known a priori, g¢SSume that the channel capacity distributions are i.i.d. across
estimated by the base station. users , therefore we will sometimes drop the users’ index in

this section and denot&*® by X, a random variable whose

Discussion of the assumptiond.et us first discuss the distribution is same as that of the channel capacity of any of
assumption that the base station knows, and in particular ¢he users in the system.
estimate, the marginal distributions of the channel capacityLet A,.(t) denote the set of active real-time users at time
processes. This can be achieved using simple book keepsigt ¢, i.e., if i € A,.(t) the base station will allow userto
on the users’ feedback of the currently achievable rate, i.eqmpete for the slot. Note that the scheduling discipline
tracking. We need to know users’ channel distribution for maxvill be responsible for deciding which real-time users are
imum quantile scheduling (for asymmetrical channel capacifgllowed’ to contend for a slot. Also note that for convenience
distributions), and to perform resource allocation. We show ihis possible for an active real-time user in a slot to have no
[14] that the throughput penalty due to estimation errors lacklogged data. The set of active best effort users is denoted
users’ channel distribution is not high for maximum quantilby A,(¢). A best effort user; is said to be active only if it
scheduling. This result will be informally stated later in thidas a backlog prior to that slot. The set of active best effort
paper. Additionally as will be discussed in the final analysisisers is denoted by, (¢) and defineA(t) := A, (t) U Ay(¢).



Under max rate scheduling, the base station receives charoiats opportunism to provide high throughput to all users
capacity feedback’(¢) from each user inA(t) and chooses while meeting real-time users’ QoS requirements. Yet, let us
the ‘best’ to serve. More formally, the access station chood&st consider scheduling real-time users. A simple way to
to serve user during slot¢ if z%(t) = maxjeca)2?(t). serve them is to use a frame withslots. In every slot, the
We let X = max{X, .., X;}, where all X;'s are i.i.d. users feedback their rate for that slot and the base station
and X; ~ X, ie., X® is the maximum of i.i.d. random opportunistically serves the best user. Once a user has been
variables. Consider a slot where usés competing with —1 served in a frame, he does not compete for service until
other users. Conditioning on usebeing selected for service,the next frame. This ensures that each active real-time user
his conditional rate distributiofX® is the same a(). This gets served once every frame. This scheme is similar to
follows easily by symmetry among the contending users. L#tat proposed in [8], however the objective there was not to
us discuss some properties &t which will be useful in the provide QoS guarantees. One might call this ‘opportunistic
proofs given laterX (") are stochastically increasing ini.e., round robin’ scheduling. Consider a saturated system, i.e., all
Ve, Pr(XUHD > 2) > Pr(X® > z). This is usually denoted users have infinite backlogs. Under conventional round robin
asX (1) >st x() and means that the probabilify") takes a typical user in such a system would see a slot whose rate
a high value increases in distribution is the same a&¥ (!, i.e., no opportunistic gain.

We shall letn denote the total number of real-time userslowever, under the opportunistic round robin scheme, a user
and n, the total number of best effort users (see Figure 1is equally likely to be served on any one of the slots of the
For simplicity we assume that a user initiates only one tygeame. If it is served on thén — j + 1) slot, it would have
of session at a time, with exactly one real-time stream peompeted withj —1 other users and will see a rate distribution
real-time user, i.e., the number of real-time users is equaldbX (7). This means that the rate distribution irtygical slot
the number of real-time streams. will be a mixture, i.e., with probability (W.p.{Z it will see the

QoS definition.The notion of QoS considered in this papedistribution of X (™, w.p. 1 a distribution of X("~1 and so
involves ensuring a usersees a desired rateover a frame on. We let the random variabl& have the rate distribution
of length 7 with an outage probability o6. More formally, seen by such a user, then
we divide time into equal sized ‘frames’ of units and our

goal is to ensure that for each of these frames XM wp.1/n
Y = cooowp.1l/n 1)
Pr(Si(1) >r7) > 1—4, XM wp. 1/n.

where S;(7) is a random variable denoting the cumulativeCI VY S5t x (1) - d robin sch
potential service to userduring a frame. For simplicity we _ﬁ:ar_y = d,dscz ourtop;portunlstlc round robin scheme
restrictr to take only integral values with respect to the tim&/!" 9ive Improved data rate o users.

unit, i.e., the QoS guarantees are given only over an integraff Present day systems, a time slot is of the order of
number of time slots. milliseconds (1.67 msec for CDMA-HDR), while video and

If the traffic load of user does not exceegr over a given multimedia traffic require guarantees of arouri) kbps on
frame, and any data experiencing more than a delagrd a time scale of the order of hundreds of milliseconds. So,

thrown away (i.e., no longer considered for scheduling), théfnthe number of real-time users is not large, i.e., frame

the above rate guarantee translates to a delay guarantee oftf@S are tens of milliseconds, there is a ‘slack’ in the QoS
form requirement that is not exploited by opportunistic round robin

i _ which in turn can lead to severe system throughput penalties—
Pr(D*<27)>1-4, ! i - ,
- _ . . _ our simulations (not presented here) show this. This slack can
whereD" is the scheduling delay associated with a typical bife used to schedule best effort users and enhance opportunism.
of data designated for useér An alternative is to have a larger frame and give multiple slots

To guarantee the required QoS, we will use a stochastig users. This brings us to our proposed scheduling scheme.
envelope based approach [5][9]. The idea is to lower bound

the actual services;(r) by a quantitySi°®(r) that satisfies
two properties, firstly C. Proposed Scheduling Scheme

Si() >t sfvw(7)7 In our scheme the frame is as long as the time period on
which the QoS guarantees need to be ensured,r.each

i low P
so that if 5;(7) meets the QoS guarantee then so Willg) time user is assigned‘tokens', i.e., each real-time user

S;(7). Secondly,5;**(r) will be analytically tractable from a i he served at most: slots within a frame. Note thaik

resource allocation perspective. can at most be equal ta. We describe how to determine the
We will first focus on providing the same QoS guaranteg, ;e of in the next subsection

to all the real-time users, and later generalize to multiple QoS

needs in Section IIL. The proposed scheduling scheme combines a policy to

decide which users will be active, i.e., the git) that contend

o ] for a slot, with a mechanism to select the user to serve during

B. Opportunistic Round Robin that slot. To avoid confusion, we henceforth refer to the latter
Recall that our goal is to find a scheduling scheme ard ‘selection criterion’ and denote it by a set-valued function

resource allocation strategy that exploits both intra and inté(-). In this section we use max rate selection criterion among

4



users, i.e., We now give a brief description of the scheme using an
#(B(t)) := arg max 27 (t), example containing a number of best effort sessions and 2 real-
JEB®) time users. Each real-time user is assigBddkens. Figure 2
where B(t) is a set of users at time slét Note since rate shows a frame of size = 10.
distributions are i.i.d., i.e., symmetric, this criterion is fair and Whenever a real-time user is given a chance to be served, his
maximizes system throughput. token count decreases byand when the token count becomes
We present the proposed scheduling scheme in terms ofzamo, he is no longer considered for service (Steps 6 and 10).
algorithm that is implemented every frame. It starts at the first The scheduling scheme is divided into two phases. During
slot of the frame and ends at the last slot of the frame. Tlige first phase (Steps 3 - 7), both active real-time and best
time slots within a frame are indexed &s= 1,...,7, while effort users are allowed to compete for service. In each slot,
the number of tokens remaining for usgis denoted byk’!. the user with the maximum rate is identified and served,
Recall thatA,.(t) is the set of active real-time users allowegvith ties broken randomly. The first phase continues until the
by the proposed scheduling scheme to compete during slototal number of remaining tokens in the system is equal to
in contrastA,(t) is the set of best effort users that have datée number of slots remaining in the frani®tep 2). In our

backlogged during slot and A(t) = A, (t) U Ap(t). example (Figure 2), the first phase lasts until Slot 7. In Slot
3 andb, real-time Userl supported the highest data rate and
Algorithm for the proposed scheduling scheme was served, similarly real-time Userwas served during Slot

6. Best effort users were served in the rest of the slots (the
shaded ones). After Slot 7, the above mentioned condition for
1) Initialize t = 1 and A,.(1) to be the set of all admitted the end of first phase is satisfied, so the second phase starts.
real-time users each with tokens allocated to it, i.e., During the second phase (Steps 8 - 11), only the real-time
Vje A(1), ki = k. users are allowed to contend for service under the max rate
2) If t > 7, i.e., end of frame is reached, then go to Stegelection criterion. This phase is needed to ensure that every
12, else if (1 —t) = > jca. 1) ki, i.e., the number of real-time user is served as many times as the number of tokens
remaining slots in the frame is equal to the total numbeassigned to it. Note thatl,.(¢) will be empty by the end of
of remaining tokens, then go to Step 8 else go to the nakie frame. The second phase slot assignment for the example
step. are shown in Figure 2. Slotsand9 are assigned to real-time
User2 and he is no longer allowed to compete. As a result,
Phase | User1 gets Slot10, thus ensuring that both users got served
3) Based on the feedback from the users, choose iisess many times as the number of tokens they were allocated.

such thati € ¢(A(t)), with ties broken randomly. Note that Figure 2 is just one of the many realizations that the
4) If i is a best effort user, then serve him and go to Stgpoposed scheduling scheme could follow (even the starting
7, else go to the next step. point of the second phase is not fixed). In fact the number of

5) If i is a real-time user which is backlogged, then serysossible realizations grows combinatorially in bothand ,
him, else if A,(t) is not empty serve a best effort usemaking the scheme hard to analyze.
from A,(t). The best effort user can be selected using Note that we provision tokens for real-time users based on
any criterion e.g. proportionally fair, max rate etc.  their QoS requirements, therefore it is possible that a real-time
6) Updatek; = k; — 1, and if k. = 0, i.e., useri has user selected for service may have no data to receive during
used up its tokens, then updats.(t) = A,(t) \ {i}, that slot (note that the definition of an active real-time user

i.e., remove usef from Ar(t_)- allows this). When this is the case, we allow the slot to be
7) Incrementt = ¢ + 1 and defineA,(t + 1) = A.(t). Go used by any active best effort user (Steps 5 and 9). The best
to Step 2. effort user to be served can be selected on a desirable criterion

e.g. max rate, proportional fairness.

Phase I Some comments on the two phases of the proposed schedul-
8) Based on the feedback, choose usesuch thati € jng scheme. The first phase allows the exploitation of both
¢(A,(t)), with ties broken randomly. Note that we argnter and intra class opportunism and thus takes advantage of
now choosing only among real-time users. the slack in the QoS requirement. The second phase is needed
If i is a backlogged real-time user, then serve him, elg guarantee quality of service to real-time users, however note
if A,(t) is not an empty set, then serve a best effort Usg{at opportunism is still exploited across the remaining real-

from A,(t). Again, the best effort user can be selectegine users. Together the two phases allow one to maintain high
using any criterion e.g. proportionally fair, max rate etgnroughput while providing quality of service.

10) Updatek, = k. — 1, if k. = 0, i.e., useri has used
all of his tokens, then updaté,.(t) = A.(¢) \ {4}, i.e.,

9)

remove uset from A, (t). D. Analysis and Resource Allocation

11) Incrementt =t + 1, if £ > 7, then go to the next step, The value ofk must be decided so that the specified QoS
else defineA,(t +1) = A.(t) and go to Step 8. guarantee is met for all real-time users. L&t denote the data

12) Proceed to the next frame. sent to a real-time user upon consumingjitstoken, i.e., the

jth time it gets served. Our goal is to determine the minimum




Best effort users E the system when a typical real-time user gets tHetoken

m in our proposed scheduling scheme. L&} represent the
- 1 - 1] 2 - 2 2[ 1| same quantiy for the static division scheduling scheme. Note
| that under the static division scheduling scheme, a real-time
Phase | ! Phase 1 user competes only with other real-time users while under the
proposed scheduling scheme there might also be competing
Fig. 2. Example of the proposed scheduling scheme with frame si6é of hast effort users. Therefore it is likely thM;f >st N. this is
and 2 real-time users each havirigtokens ) L0 = .
at the root of our next theorem, which is proven in Appendix |.

.
nLrjlmb_er of tokens: such thatPr(ZJ':thj = TT)hz 1 f_‘s('j Theorem 2.2:Consider the proposed and the static division
-dr' |s_l|)s not easy to compute, even when users have 1.1.d. I o4y ling schemes where all real-time users are allocated an
Istributions. equal numberk of tokens. Then under Assumption 2.1 and

Note thatvj, Z; >* X, i.e, at worst a user contend§pe may rate selection criterion, for a typical real-time user
with no other users and thus sees the marginal channel
capacity distribution of a typical slot with no opportunistic k . st k
gain. Therefore it is likely thavs, Y77, Z: >** 3°°_| Xj, ZZJ = ZZJ"
where X;’s are i.i.d. andX; ~ X. (Note that because;’s =t =t
are not independent random variablg$ >** X is not a ~ Theorem 2.2 implies that to meet the quality of service
sufficient condition for provingd~7_, Z; >** 37| X, but constraint, itis sufficient to satisityr(zlljzl Z;>r7)>1-4.
the bound will be shown to be true later.) Then perhaps, tfie compute this, let us study the propertiesf Note that

simplest bound would be to replagg by X, and finding the Z; is the maximum overV; i.i.d. random variables with the

minimum value ofk that satisfie?r(zg.“:l X;>rr)>1-§ Same distribution asX. _In .othgr Words,_Zj ~ X wp.
using e.g., the Central Limit Theorem. But this bound is veyr(lV; = 1), VI. The distribution of X is assumed to be
conservative, i.e., will allocate too many tokens, becalise known, but it is difficult to calculate the distribution d¥;
does not reflect any of the opportunistic gains achieved by thgcause of the number of ways our opportunistic scheduling
proposed scheduling scheme. scheme can proceed, i.e., how users are served, grows in a
To find a more efficient, yet conservative resource allocgombinatorial fashion. Also note thay;'s are not i.i.d. which
tion approach, consider a ‘static division scheduling schem&akes it difficult to calculat®r(>_;_, Z; > r7) for any given
where the frame is divided into two parts. During the firsfalue of s. To remedy this, we propose a further stochastic
part, consisting of — nk slots, the slots are opportunisticallylower bound that still faCt?rs the opportunistic gain. Our next
allocated among the best effort users, while the real-time usél@im is that} -, Z; > 5, ,Y;, whereYj's are i.i.d.
are opportunistically served during the second part. This 8dY; ~ Y, whereY is as defined in (1) in Section II-B.
a special case of the original proposed scheduling scheMYg shall refer to thls stochastic lower bound as the ‘mixture
where only best effort users are served in Phase I. Zet bound'. The following theorem formally states our claim with
be the same quantity for the static division schemezgs the proof given in Appendix Il.
is for the proposed scheme. We claim in Theorem 2.2 thatTheorem 2.3:Consider the static division scheduling

E e sst Sk g ic divisi : _
2 Zf 2% X5, Z;, ie., the static division scheduling g peme where all real-time users are allocated an equal number

scheme under performs relative to our proposed mechanisgt. ;. toyens. Then under Assumption 2.1 and max rate selection
Before proving this claim, we digress to state three ProRtiterion. for a typical real-time user

erties satisfied by both the proposed and the static division

scheduling scheme when max rate selection is used under ~ e
Assumption 2.1. These properties are used in the proof of ZZJ’ = ZY]»,
Theorem 2.2, its supporting lemmas, and subsequent results. 7=1 =1

. . whereY;’s are i.i.d. andY; ~ Y, with Y is as defined in (1).
Property 2.1: (Equal Resource AllocatignAll real-time

users are allocated an equal numbeof tokens. Theorem 2.3 bounds the cumulative data received by a

) ) ) typical real-time user in a frame by a sum of i.i.d. random
Property 2.2: (Symmetrical Selectignn a typical slot, each yariables where each is a mixture of distributions. If the

active real-time user is equally likely to be selected for servigg mper of tokens required per user, ik,,is large enough,
by the selection criterion (the selection probability for an actige gistribution 0‘25:1 Y; can be roughly approximated, e.g.
best effort user can be different). using the Central Limit Theorem. An advantage of using the
h Central Limit Theorem is that one can compute the valug of
based only on the mean and varianceYqfwhich eliminates

where X*() is the random variable denoting the rate seen e need to know the actual distribution &f. Of course note

useri given it is selected for service while competing witfhat if users’ rate distribution change, then so will the number
I — 1 other users of tokens required by them and the valuekolill have to be

recomputed and allocated to track such changes.
We now introduce some further notation. L&t: be a Note that by virtue of the definition oft”, the above
random variable representing the number of real-time usersaipproach factors the opportunistic gains in our scheme. Recall

Property 2.3: (Monotonicity The selection criterion is suc
that for any use¥ and for any value of, X%+ >st xi(0),



Theorem 2.2 Theorem 2.3

that the marginal distribution for each user is either known a

priori, or estimated by the base station.

k ISt k s s k
*
Z Zj Z Z Zj Z ZY, Z ZXJ Note again that we are not assuming any specific distribution
=y 1:14 i:1‘ =1 on the channel capacity variation.
! | i 4 The token scheme proposed in Section Il achieves multiple

goals, it guarantees that the QoS requirements for real-time
users are met, while exploiting both intra and inter class
opportunism to achieve high overall throughput. We want these
desirable properties to hold while extending the scheme to

Fig. 3. Stochastic ordering of the cumulative data received by a typictzrl'e asymmetric case. Our approach of allocating tokens to

real-time user in a frame under the proposed scheduling scheme, the s@@&¢h real-time user and then scheduling users opportunistically
division scheduling scheme, the mixture method and the simplest methodallows us to achieve these goals. However to efficiently

. ) calculate the number of tokens required by a user, one would
that the S|mple?¢t bound to computeconservatively would be jixe the Theorem 2.2 and Theorem 2.3 to also hold under
to ensurePr(3_;_, X; > r7) > 1 — 4. Now as discussed in Assymption 3.1. As mentioned earlier, the proofs of these
Subsection II-BY’ >* X, and due to independence among,eorems depend on the Properties 2.1, 2.2 and 2.3 holding
Yy's, 35, Y; > 370 X;. Hence once can conclude thagy e,

Z§:1 Zy > Z§:1 X, i.e., the simplest method is conserv- Let us consider the ‘Equal Resource Allocation’ property.
ative. Figure 3 summarizes the overall stochastic ordering fghder Assumption 3.1, it is likely that different users may
the cumulative data received by a typical real-time user undegjuire different number of tokens to be guaranteed the same
the proposed scheduling scheme, the static division schedul@@S. This can be dealt with by simply over allocating tokens
scheme, the mixture bound and the simplest bound. so that all real-time users have the same number of tokens,
A simple numerical experimentAs mentioned earlier, the but this in turn can lead to lesser number of real-time users
simplest bound may allocate too many tokens. For examptgstting admitted. Better alternatives will be discussed later.
we computed the number of required tokens per user usingThe ‘Symmetrical Selection’ and ‘Monotonicity’ properties
both the simplest bound and the proposed mixture bound t#pend on the selection criterion. It is clear that under As-
a system where each real-time user required a rate guarasi@aption 3.1, it is unlikely that max rate selection criterion
of 100 kbps over a time scale df67 msec with an outage will satisfy Property 2.2. An alternative is to randomly select
of 1%. The number of real-time users wasand all users a user (among the active ones), however there would be
were experiencing Rayleigh fading with a mean signal to nois® opportunistic gains in this case. Our solution is to use
ratio(SNR) of2. Each slot was of siz&.67 msec (so the frame maximum quantile scheduling, which will ensure that the two
size was 100 slots) and the mapping from SNR to discrete rafgsperties are satisfied and yet give good opportunistic gains.
was that used for CDMA-HDR [3]. The simple bound gavélaximum gquantile scheduling has been proposed by several
a requirement o0 tokens per user while the mixture boundesearchers under different guises [11][12][4][15], it is briefly
suggested only2 tokens were needed. In addition, simulationmtroduced in the next subsection.
showed that the exact number of tokens required to meet the
guarantee were 11IThis suggests that our mixture bound i Maximum Quantile Scheduling

fal\rll\yl/ tlng;t, r?mfzthl:; 'j:ser]:zl r the or d scheme. unlik We introduce some notation to describe maximum quantile
¢ emphasize nat under the proposed scheéme, uniike ﬁeduling. The rate distribution function of ti& user, i.e.,

weight based schemes discussed in related work, we were gQle . vion function ofX‘ is denoted byF,(-) and its
to develop a concrete resource allocation approach. !

unique inverse by, ' (-). For simplicity, we conside to

be continuous random variable3he results can be extended
[1l. SCHEDULING AND RESOURCEALLOCATION FOR to the discrete case [13].

ASYMMETRICAL CHANNEL CAPACITY DISTRIBUTIONS As mentioned earlier, the idea of the scheme is to schedule

Go User whose current rate is highest relative to @nen
stribution, i.e., in the highest quantile. Under maximum

! | mixture bound

| static division scheduling scheme

propcl)sed scheduling scheme simplest bound

The symmetrical rate distributions case considered abo
though unrealistic is a good starting point to solving the mo : _ . : ;
general problem. In this section we allow users to experiengd@ntile scheduling, useris selected for service on time slot
different channel capacity distributions and describe the molfd\—’vhen [12] ) ;
ifications required to our proposed scheme. We restate our LEe Are Fy(2(t))-

assumption on the users’ channel characteristics as follows: | L ) o
Using the fact that; (X7) is uniformly distributed on0, 1],

Assumption 3.1We assume the channel capacity (rate) fane can show that each competing usexgsally likelyto get
each user is a stationary ergodic process and these processesged on a typical slot, i.e., Symmetrical Selection is satisfied
are independent, bubtot necessarily identically distributed by the scheme.
across users. The channel capacity for each user is fast fadindyext we show that maximum quantile scheduling sat-
i.e., the channel capacity for each user is independent acriséies Property 2.3, i.e., Monotonicity. Defing®®) =
slots and remains constant during a slot. Further we assumex{X{,..., X/}, whereX!'s are i.i.d. andX} ~ X". Then

7



the rate experienced by usewhen selected for service on awhen theX’ are continuous. For the discrete case, we refer
typical slot by maximum quantile scheduling while competinthe reader to [14][4].

with [ — 1 other users, has the same distributionas(®. With the two proposed modifications, the three properties
It is easy to see that for any X»(+1) >st x%() je., stated in the previous section are satisfied. It follows that the
Monotonicity is satisfied. claims of Theorem 2.2 and 2.3 hold under Assumption 3.1.

Note that maximum quantile scheduling requires that usef®his in turn shows that the value &fobtained in (3) and (4)
rate distributions be known at the access point. Howevevijll be conservative.
rate distributions can be estimated using the feedback senRather than state the modified versions of Theorem 2.2 and
by users’ on each slot. Lef2’ denote the rate seen by2.3 under Assumption 3.1, we will state a stronger version
useri on a typical slot in which it is selected for servicehat will be useful later in the sequel. L&t be any set such
under maximum quantile scheduling with perfectly knowthatS C {1,...,k}, this can be viewed as any subset of the
distributions. Letf%;‘n denote the same quantity for ugamder tokens assigned to a user. L@}'* denote the transmitted data
maximum quantile scheduling with users’ rate distributioto real-time user when it uses up thg‘" token under the
being estimated using: previous samples of the feedbackproposed scheduling scheme andZétbe the same quantity

Then it is established in [14] thatr, for the static division scheduling scheme. The following are
ma 1 m Pr(Ri <) the generalized theorem statements without proofs (which are
( (1—( yret)) < ————= < 1. analogous to those of Theorem 2.2 and 2.3).
Ntot m-+1 Pr(R: <)

Recall that hereu,,; denotes the total number of users in the |n€orem 3.2:Consider the proposed and the static division

system. The above statement can be simplified to show tf&f'€duling schemes where all real-time are allocated an equal

if one needs to achieve an average throughput penalty of |88&nPerk of tokens. Then under Assumption 3.1 and maxi-

thane due to rate distribution estimation error, then one nee§&M quantile selection criterion, for any real-time user

only m = =2t samples, i.e., linear with the number of users. Z % st Z i

For example, to achieve a penalty less than 594, samples 7T 7

are needed, which seems reasonable since there are hundreds

of slots in a second. for 5 C{1,....k}.
We are now in a position to describe the proposed modifi- Thegrem 3.3:Consider the static division scheduling

cation to our scheduling discipline under Assumption 3.1. gcheme where all real-time users are allocated an equal number
k of tokens. Then under Assumption 3.1 and maximum
B. Proposed Modification quantile selection criterion, for any real-time uger

JES JjES

We begin by discussing resource allocation, i.e., evaluating Z Zi st ZY’i
how many tokens should be allocated to each user. In order T !

_ e jes jes
to do so, we define a new quanti¥y/ given by , N )
for S C {1,...,k}, whereY/’s are ii.d. with the same
_ X4 w.p. 1/n distribution asY” is given by (2).
Y'= .. W.p.1/n 2 , . : )
XM wp. 1/n. Grouping of users.As mentioned earlier, allocating the

same number of tokerisis based on (3) and (4) is likely to be
As mentioned earlier, it is likely that due to the asymeonservative for heterogeneous users. To improve upon this,
metric nature of users rate distributions, each real-time us@é group users with smaller token requirements into single
may require a different number of tokens for the same Qaftual users. We explain this with an example below.

requirement. For each real-time user, calculate Consider the following scenario, suppose there fareal-
s time users in the system. All users undergo Rayleigh fading,
k' = min{s | Pr(z Y] >rr)>1-0}, (3) but have different mean SNR. Uskiand2 have a mean SNR
° j=1 of 3, User3 has a mean SNR df, while User4 and5 have

a mean SNR 0f).8. The SNR to rate mapping is same as
the example discussed in Section II-D, i.e., same as that of
CDMA-HDR. All real-time users are to meet a QoS guarantee
k= max k. (4) of 100 kbps over a time scale af67 msec with an outage
J=hen probability of 1%. The frame size is thus00 slots.
Suppose every real-time user is allocatetbkens. Note that  If tokens are allocated according to (3) and (4), then
we require thatmk < 7, i.e., the total number of tokenseach real-time user would be allocat2d tokens each (see
allocated must be less than or equal to the size of frame. Figure 4(a)), and there would be no slots left for Phase | of
It should be clear by now that the selection criterion ithe proposed scheduling scheme. However, if a given real-time
changed to maximum quantile instead of max rate. Thus theer competes with at mo8tother real-time users in a slot,
selection criterion in the algorithm is now defined as theny® = X*O wp. L 1 =1,....4. In this case Users
, and 2 will require 11 tokens each, while Use} requires13
O(B(t)) := arg max Fj(a’(t)), tokens and Uset and5 require22 tokens each. One can then

whereY} are i.i.d. andy; ~ Y”, with Y* defined in (2). We
shall letk now be given by



f User 1k = 10 W‘ Theorem 3.4:The Optimal grouping problem is NP-Hard.
User 2, k,= 10 / Proof: Consider a fixedn’, then finding the value of
n=5 User 3, k=12 % ///i kmaz(n') is equivalent to the load balancing problem, which

User 4,k,=20 in turn is known to be NP-Hard [6]. [ ]
' S — Lf%ks':kzz_fzf) 77777777777777 i One can however propose simple heuristics to find subopti-
_ ! mal grouping solutions. For example consider a giwérthen
(&) no grouping a user must belong to one of thégroups, each corresponding
to a single/virtual user. A simple solution would be to order
A Userl k=11 \ User 2, k,=11 users by their ‘load’k’(n’) and starting with the highest
i User 3, k3= 13 = ~——  k'(n'), place them in a group that currently has the lowest total
ns4 User 4, k ;= 22 load. One can search over different best fit solutions varying
; User 5, k= 22 values ofn’ and find the best solution. For other heuristics,
PE——_— K=22 - —mmmmmmmm e - see [6].

Multiple QoS GuaranteeslL et us consider providing differ-
ent rate guarantees to different users. Here, each user can ask
Fig. 4. Parts (a) and (b) show token requirements and allocation with af@f @ specific rate guaranteéwith his own outage probability
without grouping respectively. The shaded portion depicts the excess allocafed However, the time scale over which the guarantee is
tokens given, i.e., the frame length is common to all users. (One

allocate22 tokens to UseB, 4 and5 and combine User and can somewhat relax this constraint by giving guarantees over

2 into a single virtual user having a total @2 tokens. This integral multiples ofr.) Supporting multiple QoS requirements

is illustrated in Figure 4(b), there’ represents the maximumecan lead to different users needing different numbers of tokens,

number of real-time users that are allowed to compete fordich can be solved by grouping real-time users together. Thus

slot (note that’ = n if no grouping is used, else’ < n). €xtending our scheme to meet multiple QoS criteria efficiently.

As shown, Userl uses the firsfil tokens of the virtual user

followed by User2. ThenS = {1,...,11} for User1 and C. Call Admission Policy

by Theorem 3.2 and 3.3, both would be able to meet theirThe call admission policy is quite simple, to admit a call

QoS requirement. We simulated such a system wWittbest /. < - wherek now is the number of tokens allocated to

effort users and verified our claim to be true. The advantag@ch user or a virtual user (if there is grouping).

of grouping is exhibited in this example where instead@  However, note that in order to check whether a new user can

tokens, only8s8 need to be allocated to real-time users.  pe admitted into the system we have assumed that the capacity
There are multiple ways of grouping users together, oggstribution of the new useF,, () is known a priori, this is

can also group more than two users. Another possibility is {@likely. A practical solution to this problem is to initially use

increasek slightly to allow better groupings. Referring backg typical distribution derived from users currently or previously

again to our example, suppose Usemd4 required21 tokens associated with the wireless access point. For example, let

each instead of th22 required (with grouping), then one couldf(.) be the ensemble averagg,of the distributions for ongoing
have defined: as22, i.e., over allocate by token to User3 (or past) users, e.gf(z) — —im Fi(@) This distribution

Nto .
and4, to allow us to group Users and2. represents what a typical user mtiéht see, or what a mobile

Ubl}fortuc\?te_lyt fn;dmg the Opt'T‘? gr(t)uplng IS an '\:P_'Ha[(fljtser might see throughout its lifetime in the system.
problém. VVE Introduce some notation 1o prove our claim. Let i s 5154 important to note here that call admission is a

P,.» denote the collection of all partitions of the set of all real-

i it tv sets. LeP denot it p long term decision, and one may need to save resources for
IMe Users wi non-empty Sets. enote a partition ot ¢\ re events like time varying rate distributions. Here, the
the set of all real-time users, apdbe a set inP. We denote

the tok ired b swhen it i ting f .~ _number of tokens required by a user may vary across frames,

_?ho/er?st relqwrelz " y usew fen 1S compe |r)g 'Ic')rrm sert\;]lce this can be due to inaccuracy in estimating the distribution
WIth n”virtual real-time users lor service by (). Then the of users (especially for the newly admitted user) and time
problem of optimal grouping can be written as follows:

Obtimal . blemFind th b ¢ , varying nature of users’ rate distributions. Therefore one needs
pumal grouping probiemrin € number o groups™ 4, reserve a pool of extra slots to handle such variations and

and a partlﬂotrr]]P t of all real-time users into that number OfaIIocate tokens from the pool to users that are not able to meet
groups such tha their QoS requirement in a frame. This pool can also be used

(b) User 1 and 2 grouped together

min 7' kpag(n'), for incoming handoffs from neighboring cells. Estimating the
n'=l,..m number of tokens can be investigated as future work.
where
Emaz(n") = min max ki(n’)_ IV. SIMULATION RESULTS

PcP peP < . . .
i€p We simulated the proposed scheme under various scenarios.
The following theorem shows that the above defined pro¥/e€ begin by considering the performance of the scheme
lem of optimal grouping is NP-Hard. as the number of real-time users and the QoS constraint

vary. Next we observe the outage of real-time users with an



the overall system throughput that would be achieved by the
20 users under max rate scheduling with no QoS constraint.
Here, we remind the reader that maximum rate scheduling
maximizes overall system throughploat can be achieved. The
throughput achieved by our scheme as a percentage relative to
this upper theoretical bound is are plotted in Figure 5. The
first observation is that we are able to achieve more than
90% of throughput withl real-time user. Second, note that
while the number of real-time users increases frbro 9,
the throughput degradation experienced is less f#anThis
indicates that our scheme is quite robust to increases in the
number of real-time users in terms of degradation in the overall
system throughput.
e .+ & v & o In our second set of simulations, we studied the tradeoff in
Number of real-time users (n) the overall system performance as the QoS requirements were
relaxed. Here we allowed the users to undergo heterogeneous
;i:%efﬁe CPoeécentage system throughput achieved by the proposed schedfigding. The setup is the same as the one used in describing
schen pared to max rate scheduling with increasing number of real-na]%uping in Section IIl. There are 5 real-time user all undergo-
ing Rayleigh fading with mean 3, 3, 2, 0.8 and 0.8, along with
16 best effort users, also experiencing Rayleigh fading with
a mean SNR of 2. In our simulations, we grouped the first
two real-time users (as discussed in the grouping example).
Each real-time user was given a guaranted @f kbps with
an outage ol % over varying frame sizes. The number of slots
in a frame was varied from00 slots to1000 slots in steps of
100 slots.

In the heterogeneous case, comparing the performance of
our scheme to max rate scheduling is not reasonable. There-
fore, in this simulation we kept track of the average quantile
of the user served by our scheme, iB[Y> " F;(X")1g:],
where 1g: is the indicator function of the everfi?, which
83 i i i i i i i i is the event that user gets served under our scheme. Note
100 200 300 400 500 600 700 800 900 1000 .- . .

Strictness of QoS constraint in terms of the number of slots per frame (1) that OppOTtUHIStIC SChedU“ng tries to serve the user that

is currently experiencing a ‘good’ rate. A measure of the
Fig. 6. Percentage average quantile achieved by the proposed sched@@@dness of the current rate can be the quantile of the current
scheme compared to maximum quantile scheduling with varying QoS cqmte of the user, i.e.Fi(a;i(t)) [14]. Therefore the average
straint in number of slots per frame. quantile of the user served under a scheme is a measure of

increasing number of best effort users. Finally we proposePRPOrtunism being exploited by the scheme. To again put our

heuristic to accommodate slow fading channels and observe/R8UItS in perspective we plotted our results as a percentage
performance. Our simulation setup is similar to that of CDMAQf the average quantile of the user served under maximum
HDR, the slot time period was set ©67 ms, with SNR to quann!e. §chedull_ng without any QoS clonstrlalnts).. Npte that
rate mapping borrowed from [3]. by deflnmon maximum .quant|le scheduling will maximize the
guantile of the user being served.
The results are plotted in Figure 6. We note that even for
strictest constraint a large part of opportunism, i.e., 84% is
In the first simulation, we investigate the overall systemxploited, and this grows to almost 90% as the constraint
throughput as the number of real-time users increases. Fsgsens.
a reasonable comparison of the throughput performance, in
this simulation all users have i.i.d. Rayleigh fading channel
capacity distributions with a mean SNR 2f Each real-time B. Outage versus Number of Best Effort Users
user requires a guarantee bd0 kbps over a time scale of We now study the outage experienced by a real-time user
167 msec (100 slots) with an outage B¥. The total number as the number of best effort users increases. This is interesting
of users is fixed at 20, while the number of real-time uselgecause as the number of best effort users increase, real-time
increases from to 9. For a given number of real-time usersusers are more likely to get served only during the second
the number of tokens required by each user was calculatgthse of the proposed scheduling scheme. Since the second
using the mixture bound and the system was simulated plkase is less throughput efficient than the first, the outage
allocating these resources to each real-time user. To put puobability of a real-time user should increase with the number
throughput results in perspective, we theoretically calculated best effort users. However since our bounds are calculated

92

Percentage throughput compared to max rate

90

89

88

871

86

851

84¢

Percentage quantile exploited with respect to maximum quantile

A. Throughput & Opportunism Performance
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In a frame some real-time users may be experiencing higher
fades than their mean, while other real-time users might be
suffering low fades. Then those experiencing high fades will
require fewer allocated tokens and vice versa. This imme-
diately suggests the possibility of token borrowing among
users, i.e., users undergoing high fade allow other users to
borrow some of their slots. If a real-time user satisfies his
data requirement before finishing his allocated tokens, his
remaining tokens are placed in a virtual pool. Whenever a
real-time user finishes his allocated quota of tokens without
satisfying his requirement, he can borrow tokens from the
virtual pool until his requirement is satisfied or the pool is
exhausted.

0 15 20 2 3 3 a0 s We simulated the performance of the proposed heuristic

Number of best effort users (n,) under varying degree of correlation (in time) of users’ channel.
There were a total 020 users in the system with real-time

Fig. 7. Maximum percentage outage experienced by real-time users wifBers with heterogeneous channel capacities as described in the

increasing number of best effort users. previous subsection. Each real-time user is given a guarantee
25 \ \ \ \ \ of 100 kbps over a time scale af67 msec with an outage

of 1%. The degree of correlation in a user’s channel is varied

using Doppler frequency fro®5 Hz to 55 Hz in steps of

10 Hz. The maximum percentage outage experienced across

real-time users observed for each step are plotted in Figure

8. Observe that the proposed heuristic is able to meet its

requirement for Doppler frequencies higher than or equal to

35 Hz. Note that when the scheme is unable to meet the QoS

criterion, one can suitably modify the size of the pool using

history (so as to meet the guarantee).
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V. CONCLUSION

% 30 3 20 25 50 55 In this paper we proposed a scheduling and resource allo-
Doppler frequency (Hz) cation scheme that allowed base station to serve a mixture of
Fa s M enced b i § real-time and best effort users. The proposed scheme realizes
1g. o. ean percentage outage experience: y rea -time users under toﬁf s . _ti
borrowing scheme and slow fading channels. The dotted line represents §bab|I|§tlc QoS QF‘ara”tee§ over ShO!’t time scales to real .t'me
target outage users while exploiting both intra and inter class opportunism

i i _across users. The effectiveness of the proposed approach is
for the worst case scenario, each real-time user should still\ pgiqated by simulation results. The proposed scheme also did

able to meet his requirement, this is verified by our simulatioﬂg,\,‘,:ly with the conventional approach of providing QoS by
results. o _ tuning relative weights among users. We also developed a sim-
The setup was similar to the heterogeneous case in )8 call admission policy for the proposed scheme. A unique
previous subsecnon_. Each real-time user required a guarargggantage of the proposed approach is that it supports users
of 100 kbps over a time scale di7 msec (100 slots) with an ity arbitrary channel capacity distributions, this makes the

outage ofl%. While the number of real-time users washe gcheme amenable to real world scenarios. Finally we proposed
number of best effort users was varied frénto 45 in steps 4 heyristic for channels with slow fading characteristics.
of 5. Figure 7 shows the results in terms of the maximum

percentage outage experienced among all the real-time users.

Observe that the maximum outage is way below the target APPENDIXI

outage ofl%. We also note that the outage probability flattens PROOF OFTHEOREM 2.2

out as the number of best effort users increase, this is becausgefore presenting the proof, we introduce some notation.

real-time users are now mostly served in the second phasenofiector of quantities say; is represented ag?/” =
— —

the scheme. (Wy,...,W,). For any two vector$V ., V1., Wiy > Vg
means that for allj = 1,...,l, W; > V;. In other words,
. N =
C. Outage Performance under Slow Fading W1y is componentwise greater thdn,,,. Recall thatN; is

Our analysis in this paper assumes fast fading channdls random variable representing the number of active real-
this may be optimistic. Our simulations suggested that tliene users in the system when a typical real-time user gets
proposed scheme does not perform well under slow faditite j** token in the proposed scheduling scheme afdbe
channel conditions. We remedy this by proposing a heuristtbe same quantity for the static division scheduling scheme.
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Then ﬁ*{:k and ﬁlzk are the vector representation 85 and From Lemma 1.1, we know that
N, respectively. We begin by proving the following lemma. -, -
7 eSPECIVEly gin by proving g Pr(Niy = Tig) = Pr(Nig = i)

Lemma 1.1:Consider the proposed and static divisio

scheduling scheme with all real-time users being allocated a q‘hen to prove (7), we need to show that

equal number of: tokens. Then for a typical real-time user PT(ZM >z 1:k|N1-k =T >
under Assumption 2.1 and max rate selection criterion - -
FL N Pr(Zl:k Z 71:k|N1:k - ﬁl:k)‘ (8)
Pr(Ni, = n1x) =Pr(Nigp = 714) (5)

Let M be the random variable representing the number of
for any vectorm .. active best effort users When a typical real-time user gets

selected thgt" time. ThenM}‘ « 1S the vector representation

Proof: For the proposed scheduling scheme, conS|d8]r the M. Conditioning left hand side of (8) oR/?, we get
only those slots in which real-time users are served. There '

are exactlynk slots of this type. If one considers the relative Z Pr(Z%, > 21kl Nty = Wi, My, = o)
slot assignment possibilities among real-time users in thése —
slots, then the number of possible reallzatlonsé 55 ) —, R — — -

Now consider a slot among thesé slots, say thatt one.  Pr(Mix =mi1k) 2 Pr(Zvk 2 Z k| Nuk = T a)-
Then due to Property 2.2, every active real-time user duringwe also know that channel variations are independent across
that slot is equally likely to get selected for service. Again dugiots, thus we have that
to Property 2.1 and 2.2, every real-time user is equally likely to =,

! . i . 7% > AN = T M = 1) =
be competing or active during ti& slot. Then if we average 1(Z1g 2 21| N1 = Wik, M1y = nivg) =
over all realizations of the proposed scheduling scheme, each Pr(Z7 > z1|NT =ni, My =mq) ...
user is equally likely to get assigned tHé slot. Pr(Z; > 2| Nf = ng, My = my),

Then the probability of a realization of the proposed
scheduling scheme in terms of the assignment ofitheslots and
— —
among the real-time users is given Y k) Consider such Pr(Z s > Zi Nig = W) =

realizations W|thN* ., = n 1 for a particular real time user.  Pr(Z; > 21|N1 =ny)...Pr(Zy > 2| Nk = ng).
Let there b, be such realizations, i.e, me1 p = 1k .
for the USer. Then Therefore to prove (6), we need to prove that

h— Pr(ZF > z;|Nf =n;, M =m;) >Pr(Z; > 2;|N;, = n;
Pr(ﬁi;k:ﬁlzk): iy r( j—ZJ| j = Ny, M m;) > Pr(Z; > zj|Nj = n;)

nk .
(kk) This is clearly true from Property 2.3. ]
Similarly for the static division scheduling scheme,
Pr(Nig = Wp) = m APPENDIXII
' ‘ () PROOF OFTHEOREM 2.3
Then clearly We present a few lemmas before proving the theorem.
— —
Pr(Ni,=n1x) =Pr(Nig = 1) Lemma 2.1:Given any sequence of non-negative numbers

a;, by and¢, I = 1,...,n. If V1,5, stl > j, a1 > qj
andvh = 1,...,n, Z?:h b > Z?:h c, then 27:1 aib; >

Next we present the proof for Theorem 2.2. Zf’zl ac.
Proof: Recall thatzé?:1 zZy >t 25:1 Z; means that Proof: We know thatvh, >, b > >;°, ¢ and
for any z, vi,j, stl>j, a; > aj. SOVh,
k n n
ZZ* >z)>Pr Z (6) (an — ah—l)(z bi) > (ap — ah—l)(z a),
j=1 j=1 I=h I=h
To prove this, we will show that for any vectoE;.,, = Whereay is defined to be equal . Summing over alkh, we
(21,5 2k), get
— — n
> ) > 5> Z1k).
Pr(Z%, > Z1k) > Pr(Z1g > Z1k) Z{ ap — ap_1 Z )} > Z{ ap — ap— 1)(ch)}.
Conditioning on the number of real-time users present in eachr=1 I=h h=1 I=h
of the slots, we get This simplifies t03";", aby > 31, acr.
— — —
Z Pr(ZT:k: Z 715k|NT:k = Wl:k) Pr(NTk = ﬁl:k) Z u
ik Lemma 2.2:Consider the static division scheduling scheme

ZPr(?lzk > 21 N = W) Pr(Niw = wip). (7)With all real-time users being allocated an equal number
of k£ tokens and max rate selection criterion. Then under
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Assumption 2.1, the data received by a typical real-time userThen (9) can be proved if we show thdf,
when it gets served for the last time, i.e., ftfé time has the — _
same distribution a¥’, i.e., Z, ~ Y. Pr(Z; > 2| Z jr1n 2 7 jp1n) = Pr(Y > 25).

Proof: Due to Property 2.1 and 2.2, the probability tha@onditionintgh on the number of USErs present in the system
a user is the first one to leave the system, i.e., be selected44Fing the;*" time when the user is served,
servicek times isl/n.. If it is the first user to leave the sy_sFem, S {Pr(Z; > zj|7j+1;k > 7]_“:]“% =n;)
then Z;,, ~ X (™. Similarly for any value ofj, the probability g Be(N. = | S 2 o (10)
that a user gets selected th& time when there are a total n r(Nj =512 410 2 2 j1k)t 2
of j active real-time users in the systemlig. Then for that 2on;=1{Pr(Yj > 2|N; = n;) Pr(N; = n)},

~ X0 ~ < . , L
user,Zy ~ X/. Hence,Zy, ~ V. " where allN; are i.i.d. and uniformly distributed oftl, ..., n}

Define a set, (from (1)). Given the number of users in a slot, the data
obtained is independent of data received in other slots, so

Sﬁl = {ﬁ)l+1;k|3n]‘ in %}lJrl:k s.t. n; >, and _
- P .
Pr(71+1:k > 7l+1:k|ﬁl+1:k = Tiy1n) > Pr(Z; 2 21 Z i 2 Zjam, Nj = 15)
- - _ _ =Pr(Z; > z;|N; = n;).
Pr(Zis1k > Z vtk Nigrw = (R, ..., )} (25 2 2IN; 2
Note that whenV; = n;, then a user will have to compete
Lemma 2.3:For any ;. 1.x ¢ Sh,s amongn; users to get service in the slot, so
— — .
Pr(Z i1 > Z stk Nipre = Wigan) < Pr(Z; > zj|N; = nj) = Pr(X ™) > 2;).
— — _ _
Pr(Z vk > Z ik Nipiw = (- 7)) Also from equation (1), we have
Proof: We give the proof by contradiction. Assume Pr(Y; > zj|N; = n;) = Pr(X() > ;).

that Elﬁl+1:k ¢_}Sﬁl s.t. Pr(ZH-li} > 7l+1:k|ﬁl+1:k = ] )

Tiorw) > Pr(Zipk > Ziokl Nisw = (m,...,mp)).  We can simplify (10) to,

Now given the n_umber qf users present in the system, ”‘iiﬁ,zl Pr(X(™) > z;) Pr(N; = nj|7j+1:k > 7 i) >
data transferred in a slot is independent of other slots. So, J s Pr(X("J') > 2) Pr(]\?j —n;)

— — nj=1
Pr(Zis16 > Z vtk Nig1k = Wig1k) = (11)
Pr(Zic1 > 2141 |Niwt = 1us) . .- Pr(Zy, > 2| Ny = ny) From Lemma 2.1, (11) can be provedvif,
and Pr(XUHD > 20 > Pr(x® > 2) (12)
— — _
Pr(Z i1 > Z il Nigrw = (... ) = andvn;,
Pr(Ziy1 2 2i41|Nips = ) ... Pr(Zg = 2| Ni = ). Pr(N; > 0| Z ik > Zypan) = Pr(N; >7;)  (13)

N . _ .
Sinceni11:x ¢ Sq,, thenvyj, n; < ny. Sovj, by Property 2.3 £y, Property 2.3, it is clear that (12) is true. To prove (13),

Pr(Z; > zj|N; = ) > Pr(Z; > z;j|N; = n;). first consider the right hand side of the equation. Referring to
Lemma 2.2, we get
Pr(Nj > ;) = Pr(Nj, 2 7i;) =

We prove Theorem 2.3 now. = (14)
P Zﬁjﬂ;k\"kzﬁj Pr(Nj'H:k - ﬁj"'l:k)'

We know thatVj, N; > N;;; almost surely. Thus

& 5 {7 j41:6nk > 15} C Siy, then from (14) we get
P Zi > > P Y. > 2). — - B
r(; 272 r(; 22 Z Pr(N i1k = W jt1k) > Pr(N; > ;). (15)

This contradicts our assumption. [ ]

Proof: The goal is to show_"_; Z; >** Y% vj, ie.,
Yz,

T i11:8ESn
To prove this, we will show that for any vectoE;., = . o _ o
(21, 20), Now consider the left hand side of (13), conditioning on

N1k, We get

— —
Z {Pr(N; = 15| Z j116 2 7 jgrkes Njsrik = T j41k)

—

Pr(ﬁlzk > 7)) > PT(?M > 2 1k)

Since theY)’s are independent, this simplifies the above

inequality to Ttk
N — N — N
Pr(Zyg > Z1k) > Pr(Yi > z1) ... Pr(Ye > 2z).  (9) Pr(Njprn = Wjsnkl Zjrke 2 2 1)} 2
_ 7 — ~ —
Using conditioning, we can rewrite the left side of (9) as Z {Pr(N; > 0] Z jy1k > Z g1k Njpie = Wjg1n)

7j+1:k65ﬁj

— —
Pr(Z1 > 21| Z ok > Zon) ... Pr(Z; > 2| Z jp1e > 7 j41ik)
— . — N
L Pr(Zy > z) Pr(Nji1e = W1kl Z j11:0 = 2 jr1k) b (16)
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Note that forﬁjH:k c Sﬁj, [16] T. S. Rappaport. Wireless Communications, Principles and Practice

Pearson Education, 2002.

_ — — — — . . . .
Pr(Nj > nj|Zj+1:k > Z i1k Nj+1:k _ nj+1:k) -1 [17] S. Shakkottai and A. Stolyar. Scheduling algorithms for a mixture

So combining (15) and (16), if we can show that

of real-time and non-real-time data in HDR. Proc. of the 17th
International Teletraffic Congress (ITC-17), Salvador da Bahia, Brazil
September 2001.

[18] S. Shakkottai and A. Stolyar. Scheduling for multiple flows sharing a

— — N —
Pr(Nj+1:k € Sﬁj | Zj+1:k >z j+1;k) > Pr(Nj+1:k € Sﬁ_,-)» time-varying channel: The Exponential rulédmerican Mathematical

Society Translations, Series 2, A volume in memory of F. Karpelevich,

then we would have proven (13). Using Bayes’ formula we  Yu. M. Suhov, Editor207, 2002.
can rewrite the above inequality as [19] P. Viswanath, D. Tse, and R. Laroia. Opportunistic beamforming using

— — —
Pr(Zjs1k 2 7 js1k| N1k € Sa,) = Pr(Z jyq = 7j+1:k)-[20]

dumb antennaslEEE Transactions on Information Theor§8:1277 —
1294, June 2002.

D. Wu. Providing quality-of-service guarantees in wireless networks,
Ph.D. thesis, Carnegie Mellon University. Aug. 2003.

Conditioning again onv,i.x, We get [21] D.Wu and R. Negi. Effective capacity: A wireless link model for support

of quality of service.lEEE Transactions on Wireless Communications

- - N - 2:630-643, July 2003.
D7 mesa APT(Z jirik 2 7 jarkl N vk = 7 j11k) 630-643, July 2003

_ [22] D. Wu and R. Negi. Downlink scheduling in a cellular network for
_ ; : ; )
PI"(Nj-H:k =7 j+1:k|Nj+1:k c Sﬁj)} > quality-of-service assurancéEEE Transactions on Vehicular Technol-

- — -~ — ogy, 53:1547-1557, Sept. 2004.
27 AP (Z e 2 Z ikl Njare = Wj41)

—
Pr(Njp1n = Tjp1k)}
17

This is true as a consequence of Lemma 2.3. [ ]
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(3]
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